What is complex analysis? The main object of study is an analytic function $f: \mathbb{C} \rightarrow \mathbb{C}$. As a set, $\mathbb{C}=\mathbb{R}^{2}=\{(x, y) i x, y \in \mathbb{R}\}$, so you may naively think that the theory is sinelor to real andysis. Surprisingly, the requirement of analycit, namely, that the limit

$$
\lim _{h \rightarrow 0} \frac{f(z+h)-f(z)}{h}
$$

exists and is finite on an open set, produces results that havre no counterpart in the real case. The difference is that the numbers in the expression are complex.
An example of a theorem we will prove: Lou'villes Theorem
Every bounded analytic function on \mathbb{C} is constant.
Chapter 1: Complex Numbers
In this chapter, we get the stage for doing complex analysis.
Main Topics:
(1) Construct the field of complex numbers
(2) Algebra!. and geometric properties
(3) Basic topological ideas of \mathbb{C}

Let \mathbb{R} be the field of real numbers. The equation

$$
x^{2}+1=0 \quad(*)
$$

has no real solutions. We seek a field \mathbb{C} containing \mathbb{R} that extends the operations t_{1}, of real numbers and contains the roots of all the polynomials. Surprisingly, the construction amounts to defining a symbol i satisfying (*) amd
then considering all sums of the firm

$$
x+i y \quad, x, y \in \mathbb{R} .
$$

Construction of the Field of Complex Numbers
Definition (The Complex Numbers) A complex number is simply an ordered pair $z=(x, y)$ of real numbers. Thus, the set of all complex numbers is given by

$$
\mathbb{C} \stackrel{\text { def }}{=} \mathbb{R} \times \mathbb{R}=\{(x, y): x, y \in \mathbb{R}\}
$$

If $z=(x, y)$ is a complex number, then we write

$$
\operatorname{Re} z=x \quad \text { and } \quad \operatorname{Im} z=y
$$

for the real and imaginary parts of z, respectively. If $\operatorname{Re} z=0$ and $\operatorname{Im} z \neq 0$, we say that z is purely imaginary.
Definition (Binary operations on \mathbb{C}) Let $z_{1}=\left(x_{1}, y_{1}\right)$ and $z_{2}=\left(x_{2}, y_{2}\right)$ be complex numbers. Then their sum is

$$
z_{1}+z_{2}=\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)=\left(x_{1}+x_{2}, y_{1}+y_{2}\right),
$$

and their product is

$$
z_{1} z_{2}=\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right)=\left(x_{1} x_{2}-y_{1} y_{2}, x_{1} y_{2}+y_{1}, x_{2}\right) .
$$

Proposition There exists a subset of \mathbb{C} that is algebraically indistinguishable from \mathbb{R}.
Proof. Consider $A=\{(x, 0): x \in \mathbb{R}\} \subseteq \mathbb{C}$. There is a bijection

$$
\varphi: \mathbb{R} \rightarrow A, \quad x \longmapsto(x, 0) .
$$

More aver,

$$
\begin{aligned}
& f(x+y)=(x+y, 0)=(x, 0)+(y, 0)=f(x)+f(y) \\
& f(x y)=(x y, 0)=(x, 0)(y, 0)=f(x) f(y)
\end{aligned}
$$

According to the proposition the operations of complex addition and multiplication extend the operations of alliftion and multiplication of real numbers. We now identify each complex number $(x, 0)$ with the corresponding real number x.

By abuse of notation, we write

$$
x=(x, 0) .
$$

Now, we define the imaginary unit as follows: $i \stackrel{\text { deft }}{=}(0,1)$. Then

$$
i^{2}=i i=(0,1)(0,1)=(-1,0)=-1 .
$$

More over, for any $z=(x, y) \in \mathbb{C}$, we see that

$$
\begin{aligned}
z=\{x, y) & =(x, 0)+(0, y) \\
& =(x, 0)+(0,1)(y, 0) \\
& =x+i y .
\end{aligned}
$$

Hence, with our new notation:

$$
\mathbb{C}=\{x+i y ; x, y \in \mathbb{R}\}
$$

with the convention that $i^{2}=-1$. With this notation, the sum and product are written

$$
\begin{aligned}
& z_{1}+z_{2}=\left(x_{1}+i y_{1}\right)+\left(x_{2}+i y_{2}\right)=\left(x_{1}+x_{2}\right)+i\left(y_{1}+y_{2}\right) \\
& z_{1} \cdot z_{2}=\left(x_{1}+i y_{1}\right)\left(x_{2}+i y_{2}\right)=\left(x_{1} x_{2}-y_{1} y_{2}\right)+i\left(x_{1} y_{2}+y_{1} x_{2}\right)
\end{aligned}
$$

The product of complex numbers can be computed by multiplying the expressions as if thy were polynomials in the variable i and using $i^{2}=-1$,
Example

$$
\begin{aligned}
(1+i)(1-3 i) & =1-3 i+i-3 i^{2} \\
& =1-3 i+i+3 \\
& =4-2 i .
\end{aligned}
$$

The proof that this works is an exercise.
Proposition (Algebraic Properties of $(\mathbb{C}, t, \cdot))$
(1) (Additive Identity)

$$
0+z=z=z+0 \quad \forall z \in \mathbb{C} .
$$

(2) (Associativity of Addition)

$$
z_{1}+\left(t_{2}+z_{3}\right)=\left(z_{1}+z_{2}\right)+z_{3} \quad, \forall z_{i} \in \mathbb{C} .
$$

(3) (Commutativity of Addition)

$$
z_{1}+z_{2}=z_{2}+z_{2} \quad, \forall z_{i} \in \mathbb{C}
$$

(4) (Additive Inverses) For all $z \in \mathbb{C}$, there exists, a complex number denoted by $-z$ such that

$$
\operatorname{def} z+(-z)=0=(-z)+z .
$$

In act, $-z=(-1) z$.
(5) (Multiplicative Identity)

$$
1 \cdot z=z=z \cdot 1 \quad, \forall z \in \mathbb{Q} .
$$

(6) (Associativity of Multiplication)

$$
z_{1}\left(z_{2} z_{3}\right)=\left(z_{1} z_{2}\right) z_{3} \quad, \forall z_{i} \in \mathbb{C}
$$

(7) (Commutativity of Multiplication)

$$
z_{1} z_{2}=z_{2} z_{1} \quad, \forall z_{i} \in \mathbb{C}
$$

(8) (Multiplicative Inverses) For all $z \in \mathbb{C} \backslash\{0 ;$, there exists a complex number denoted z^{-1} such that

$$
z z^{-1}=1=z^{-1} z .
$$

In fact, if $z=x+i y$, then $z^{-1} \frac{\operatorname{def}}{-} \frac{x}{x^{2}+y^{2}}-i \frac{y}{x^{2}+y^{2}}$.
(9) (Distributive Law)

$$
\left(z_{1}+z_{2}\right) z_{3}=z_{1} z_{3}+z_{2} z_{3} \quad, \forall z_{i} \in \mathbb{C} .
$$

Proof. Only (8). Let $z=x+i y$ be nonzero. then

$$
\begin{aligned}
z \cdot z^{-1} & =(x+i y)\left(\frac{x}{x^{2}+y^{2}}-i \frac{y}{x^{2}+y^{2}}\right) \\
& =\frac{x^{2}}{x^{2}+y^{2}}+\frac{y^{2}}{x^{2}+y^{2}}+i\left(-\frac{x y}{x^{2}+y^{2}}+\frac{x y}{x^{2}+y^{2}}\right) \\
& =1 .
\end{aligned}
$$

In the language of algebra
$(1)-(4) \quad(\mathbb{C},+1$ is an abelian group.
(5)-(8) $(\mathbb{C} \backslash[0], \cdot)$ is an abelian group.
(1)-(a) $(\mathbb{C},+, \cdot)$ is a field.

The existence of additive and multiplicative inverses gives rise to subtraction and division of complex numbers.

Definition (subtraction / division) Let $z_{1}, z_{2} \in \mathbb{C}$. We define subtraction and division as follows:

$$
\begin{aligned}
& z_{1}-z_{2} \stackrel{\text { deft }}{=} z_{1}+\left(-z_{2}\right) \\
& \frac{z_{1}}{z_{2}} \stackrel{\text { deft }}{=} z_{1} \cdot z_{2}^{-1}, z_{2} \neq 0
\end{aligned}
$$

The formula for z_{2}^{-1} is difficult to remember. In practice, division is computed by writing

$$
\frac{z_{1}}{z_{2}}=\frac{x_{1}+i y_{1}}{x_{2}+i y_{2}} \cdot \frac{x_{2}-i y_{2}}{x_{2}-i y_{2}}
$$

and multiply out the numerator and denominator. the proof is an exercise.

Proposition (Zero-Product Property) If $z_{1} z_{2}=0$, then $z_{1}=0$ or $z_{2}=0$. Proof. Assume $z_{1} z_{2}=0$ and that $z_{1} \neq 0$. We prove that $z_{2}=0$. Since $z_{1} \neq 0, z_{1}^{-1}$ exists. Hence,

$$
\begin{aligned}
z_{2} & =\left(z_{1}^{-1} z_{1}\right) z_{2} \\
& =z_{1}^{-1}\left(z_{1} z_{2}\right) \\
& =z_{1}^{-1} \cdot 0 \\
& =0
\end{aligned}
$$

There are lots of algebraic properties in the book. Try some exercises.

Geometric Properties of Complex Numbers
As a set, $\mathbb{C}=\mathbb{R}^{2}$ so it is natural to visualize complex numbers as points or vectors in the complex plane

Geometrically, addition of complex numbers is just the addition of euclidean rectors

We will see a geonctric inter pretation of multiplication later.

Definition (Modulus) The modulus of a complex number $z=x+i y$ is the length of the vector (x, y), namely

$$
|z| \stackrel{\text { def }}{=} \sqrt{x^{2}+y^{2}}
$$

Notice that the modulus of a real number is just the absolute value. We can immediately derive a useful inequality:

$$
|z|^{2}=(\operatorname{Re} z)^{2}+(\operatorname{Im} z)^{2} \geq(\operatorname{Re} z)^{2}\left(\operatorname{Or}(\operatorname{Im} z)^{2}\right)
$$

Then (taking the sq, root)

$$
\begin{aligned}
& \operatorname{Re} z \leq|\operatorname{Re} z| \leq|z| \\
& \operatorname{Im} z \leq|\operatorname{Im} z| \leq|z|
\end{aligned}
$$

Definition (Distance) The distance between two complex numbers z_{1}, z_{2} is

$$
\left|z_{1}-z_{2}\right|
$$

Example The modulus can be used to define various subsets of \mathbb{C}. (1) The circle $C_{R}\left(z_{0}\right)$ of radius $R>0$ centered at z_{0} is the set

$$
C_{R}\left(z_{0}\right) \stackrel{\operatorname{det}}{=}\left\{z \in \mathbb{C}:\left|z-z_{0}\right|=R\right\}
$$

open
(2) The annulus of inner radius roo and outer radius $R>0$ centered at z_{0} is the set $A=\left\{z \in \mathbb{C}: r<z-z_{0} \mid<R j\right.$

Proposition (Triangle Inequality) For all $z_{1}, z_{2} \in \mathbb{C}$, the following inequalities hold:
(1) $\left|z_{1}+z_{1}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|$
(2) $\left|z_{1}+z_{2}\right| \geq\left|\left|z_{1}\right|-\left|z_{2}\right|\right|$

Proof. (1) Obvious fact about triangles.
(2) We reed to show (u) $\left|z_{1}+z_{2}\right| \geq\left|z_{1}\right|-\left|z_{2}\right|$ and
(b) $\left|z_{1}+z_{2}\right| \geq-\left(\left|z_{1}\right|-\left|z_{2}\right|\right)$.
(a)

$$
\begin{aligned}
\left|z_{1}\right|-\left|z_{2}\right| & =\left|z_{1}-z_{2}+z_{2}\right|-\left|z_{2}\right| \\
& \leq\left|z_{1}+z_{2}\right|+\left|-z_{2}\right|-\left|z_{2}\right| \\
& =\left|z_{1}+z_{2}\right|
\end{aligned}
$$

So th's proves (a) when $\left|z_{1}\right|>\left|z_{2}\right|$. If $\left|z_{1}\right|<\left|z_{2}\right|$ switch the roles $\left|z_{1}+z_{1}\right| \geq\left|z_{2}\right|-\left|z_{1}\right|=-\left(\left|z_{1}\right|-\left|z_{2}\right|\right)$. This proves (b).

Proposition (Modulus is Multiplicative) For all $z, w \in \mathbb{C}$ and $n \in \mathbb{N}$,
(1) $|z w|=|z||w|$
(2) $\left|z^{n}\right|=|z|^{n}$

Proof. (1) is an easy exercise.
(2) Proof of (2) is by induction. The case $n=2$ is just (1).

Let $n \in \mathbb{N}$, Assume $\left|z^{n}\right|=|z|^{n}$. Then

$$
\begin{aligned}
\left|z^{n+1}\right| & =\left|z^{n} \cdot z\right| \\
& \stackrel{(1)}{=}\left|z^{n}\right| \cdot|z| \\
& \stackrel{I \cdot H}{=}|z|^{n}|z|=|z|^{n+1} .
\end{aligned}
$$

The following lemma is a good way to demonstrate the properties of the modulus. We will use it much later to prove the Fundamental Theorem of Algebra.

Lemma Consider the polynomial with complex coefficients

$$
P(z)=a_{0}+a_{1} z+\cdots+a_{n} z^{n}
$$

There exists $\quad R>0$ such that $|z|>R$ implies

$$
\left|\frac{1}{p(z)}\right|<\frac{2}{\left|a_{n}\right| R^{n}}
$$

(In other words, the reciprocal of a polynomial is bounded outside of a large circle $|z|=R$.

Proof. Consider

$$
w=\frac{d_{0}}{z^{n}}+\frac{a_{1}}{z^{n-1}}+\cdots+\frac{a_{n-1}}{z}, \quad(z \neq 0)
$$

Notice that $p(z)=\left(w+a_{n}\right) z^{n}$. By T.I, we get

$$
|w| \leq \frac{\left|a_{0}\right|}{|z|^{n}}+\frac{\left|a_{1}\right|}{|z|^{n-1}}+\cdots \cdot+\frac{\left|a_{n-1}\right|}{|z|}
$$

Note that, for each $0 \leq k \leq n-1$, the term $\frac{\left|a_{k}\right|}{|z|^{n-k}} \rightarrow 0$ as $|z| \rightarrow \infty$. This means we can choose $R>0$ such that $|z|>R$, the term $\frac{\left|a_{R}\right|}{|z| n-k}<_{i} \frac{\left|a_{n}\right|}{2 n}$. Then $|z|>R$ implies

$$
|w|<n \frac{\left|a_{n}\right|}{2 n}=\frac{\left|a_{n}\right|}{2} .
$$

Then $|z|>R$ imp plies

$$
\left|\omega+a_{n}\right| \geq\left|\left|a_{n}\right|-|\omega|\right|>\left|\frac{\left|a_{n}\right|}{2}\right|=\frac{\left|a_{n}\right|}{2}
$$

Hence, $\quad|z|>R$

$$
\begin{aligned}
|p(z)| & =\left(\left(w+a_{n}\right) z^{n}\right) \\
& =\left|w+a_{n}\right||z|^{n} \\
& >\frac{\left|a_{n}\right|}{2} R^{n}
\end{aligned}
$$

